行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。我们可以简单的理解成:相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。 速度和×相遇时间=相遇(相离)路程 追及问题的基本数量关系: 速度差×追及时间=路程差 在相遇(相离)问题和追及问题中,我们必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才恩能够提高我们的解题速度和能力。 【例题1】甲、乙两人联系跑步,若让乙先跑12米,则甲经6秒追上乙,若乙比甲先跑2秒,则甲要5秒追上乙,如果乙先跑9秒,甲再追乙,那么10秒后,两人相距多少米? A.15 B.20 C.25 D.30
下面是几道习题,供大家练习之用: 1.一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。已知每辆车长5米,两车间隔10米。问:这个车队共有多少辆车? 2.骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。如果希望中午12点到,那么应以怎样的速度行进? 3.A、B两次相距20千米,甲、乙两人分别从A、B两地同时出发,乙在前、甲在后,1小时后甲因取物返回A地,取物后立即追乙,从开始算经过8小时甲追上乙,已知甲每小时行14千米,乙每小时行( )千米。 |
其它
公务员考试行测数学运算解题方法之行程问题
http://www.zjgwy.org 2010-05-24 来源:浙江公务员网
免费学习资源(关注可获取最新开课信息)